首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   331篇
  免费   19篇
  国内免费   36篇
  2023年   2篇
  2022年   3篇
  2021年   6篇
  2020年   3篇
  2019年   2篇
  2018年   1篇
  2017年   8篇
  2016年   11篇
  2015年   13篇
  2014年   5篇
  2013年   49篇
  2012年   11篇
  2011年   11篇
  2010年   8篇
  2009年   10篇
  2008年   19篇
  2007年   11篇
  2006年   21篇
  2005年   15篇
  2004年   18篇
  2003年   16篇
  2002年   19篇
  2001年   11篇
  2000年   7篇
  1999年   13篇
  1998年   7篇
  1997年   11篇
  1996年   5篇
  1995年   4篇
  1994年   9篇
  1993年   8篇
  1992年   6篇
  1991年   9篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   6篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   4篇
  1979年   1篇
  1975年   1篇
  1971年   1篇
排序方式: 共有386条查询结果,搜索用时 15 毫秒
31.
Baseline sensitivity and efficacy of thifluzamide in Rhizoctonia solani   总被引:1,自引:0,他引:1  
Thifluzamide is a SDHI (succinate dehydrogenase inhibitor) fungicide, which interferes with succinate ubiquinone reductase in the mitochondrial electron transport chain of fungi. Presently, jinggangmycin is the major fungicide extensively used for the control of rice sheath blight caused by Rhizoctonia solani and resistance to jinggangmycin was first reported to occur in China. A total of 128 isolates of R. solani from Anhui Province of China were characterised for the baseline sensitivity to thifluzamide. The isolates were very sensitive to thifluzamide and the baseline sensitivity curve was unimodal with an average EC50 value of 0.058 ± 0.012 µg mL?1. However, EC50 values of boscalid (another SDHI fungicide) for inhibition of mycelial growth of 22 arbitrarily selected R. solani isolates ranged from 1.89 to 2.68 µg mL?1. Thifluzamide applied at 110 µg mL?1 exhibited excellent protective and curative activity against rice sheath blight and provided 81.1–91.0% protective or curative control efficacy. In field trials in 2010 and 2011, control efficacies of thifluzamide at 82 g.a.i ha?1 15 and 30 days after second application were 84.2% and 86.7%, respectively, suggesting excellent activity against sheath blight. There was a statistically significant difference in the efficacy between thifluzamide and boscalid or jinggangmycin. These results suggested that thifluzamide should be a good alternative fungicide to jinggangmycin for the control of rice sheath blight.  相似文献   
32.
Biological control of fungi causing root rot on sugar beet by native Streptomyces isolates (C and S2) was evaluated in this study. The dry weight and colony forming unit (CFU) of S2 and C increased when 300 mM NaCl was added to medium. The in vitro antagonism assays showed that both isolates had inhibitory effect against Rhizoctonia solani AG-2, Fusarium solani and Phytophthora drechsleri. In dual culture, Streptomyces isolate C inhibited mycelial growth of R. solani, F. solani and P. drechsleri 45%, 53% and 26%, respectively. NaCl treatment of medium increased biocontrol activity of soluble and volatile compounds of isolate C and S2. After salt treatment, growth inhibition of R. solani, F. solani and P. drechsleri by isolate C increased up to 59%, 70% and 79%, respectively. To elucidate the mode of antagonism, protease, chitinase, beta glucanase, cellulase, lipase and α-amylase activity and siderophore and salicylic acid (SA) production were evaluated. Both isolates showed protease, chitinase and α-amylase activity. Also, biosynthesis of siderophore was detectable for both isolates. Production of siderophore and activity of protease and α-amylase increased after adding salt for both isolates. In contrast, chitinase activity decreased significantly. Production of SA, beta glucanase and lipase by isolate S2 and biosynthesis of cellulase by isolate C were observed in presence and absence of NaCl. Soil treatment with Streptomyces isolate C inhibited root rot of sugar beet caused by P. drechsleri, R. solani and F. solani. Results of this study showed that these two Streptomyces isolates had potential to be utilized as biocontrol agent against fungal diseases especially in saline soils.  相似文献   
33.
A stepwise screening strategy made it possible to identify five new Bacillus spp. strains for biocontrol of Rhizoctonia solani, Sclerotinia minor and Fusarium solani. In vitro and in vivo biocontrol activity and M13-PCR DNA-fingerprinting led to the selection of these valuable biological control agents (BCAs) from a wide collection of over 250 candidates. At the end of this selection, the highest potential antagonists were identified at species level by 16S-rRNA gene sequence analysis, and results assigned them to Bacillus subtilis group as Bacillus amyloliquefaciens- and Bacillus methylotrophicus-related strains. In the current study, spore-forming bacteria provided substantial biocontrol of telluric diseases on cress and other different host plants. The strains named 15S and 09C were effective in disease control on Brassica oleracea/R. solani pathosystem, whereas Sclerotinia drop of lettuce was reduced by treatments with the strains 17S and 08C. Finally, the strains 17S and 12S were equally effective to control potato Fusarium rot. The evident zone of inhibition seen in dual culture plates suggested antibiosis-like antagonisms as the main mechanisms used by these bacterial isolates in interaction with the pathogens. Additionally, the API-ZYM method revealed constitutive activity of certain extracellular enzymes that could be involved in plant fortification. Bacillus strains isolated from compost and compost-amended soils are promising BCAs that have potential for practical application as biofungicides.  相似文献   
34.
从棉花根际分离了1277个细菌分离物,以棉花立枯病病原真菌立枯丝核菌(Rhizoctonia solani Kuhn)为靶标菌,通过平板对峙法获得25个具有拮抗性能的分离物,其中MH1和MH25具有较强的拮抗性能,且拮抗性能稳定,具有较好的生防潜力.经过形态观察、生理生化特征分析及16S rDNA序列分析,MH1为短芽孢杆菌(Brevibacillus brevis),MH25为枯草芽孢杆菌(Bacillus subtilis).MH1和MH25的16S rDNA序列在GenBank中注册号分别为:EF488102,EF488103.  相似文献   
35.
Rhizoctonia solani and Phytophthora capsici are two of the most destructive phytopathogens occurring worldwide and are only partly being managed by traditional control strategies. Fluorescent Pseudomonas isolates PGC1 and PGC2 were checked for the antifungal potential against R. solani and P. capsici. Both the isolates were screened for the ability to produce a range of antifungal compounds. The results of this study indicated the role of chitinase and β-1,3-glucanase in the inhibition of R. solani, however, antifungal metabolites of a non-enzymatic nature were responsible for inhibition of P. capsici. The study confirmed that multiple and diverse mechanisms are adopted by the same antagonist to suppress different phytopathogens, as evidenced in case of R. solani and P. capsici.  相似文献   
36.
Endospores of B. megaterium were formulated in granule formulations with sodium alginate, lactose and polyvinylpyrrolidone (PVP K-30) by the wet granulation technique. The granule formulation exhibited good physical characteristics, such as high-water solubility and optimal viscosity, that would be suitable for spray application. The bacteria remained viable in the dry granule formulation at 109 c.f.u./g after 24 months storage at room temperature. Under laboratory conditions, aqueous solutions of the formulation showed high activity against mycelial growth of R. solani (99.64 ± 0.14% mycelial inhibition). High viability of the bacterial antagonist on leaf sheath and leaf blade at day 7 after spraying with the formulation was observed (approximately 106 c.f.u./g of plant). Application of an equivalent number of un-formulated endospores resulted in much loss of the bacterial endospores even 1 day after application. In a small pilot field study, an aqueous solution of the formulation (3%w/v) applied by spraying at days 1, 5 and 10 after pathogen inoculation of the rice plants was more effective in suppressing rice sheath blight disease than one application of a fungicide (Iprodione) at day 1. Additionally, rice plants sprayed with the aqueous solution of the granule formulation had higher panicle and whole kernel weights than those of fungicide-treated and control (untreated) plants.  相似文献   
37.
Mycoparasitic fungi are proving to be rich sources of antifungal genes that can be utilized to genetically engineer important crops for resistance against fungal pathogens. We have transformed cotton and tobacco plants with a cDNA clone encoding a 42 kDa endochitinase from the mycoparasitic fungus, Trichoderma virens. Plants from 82 independently transformed callus lines of cotton were regenerated and analysed for transgene expression. Several primary transformants were identified with endochitinase activities that were significantly higher than the control values. Transgene integration and expression was confirmed by Southern and Northern blot analyses, respectively. The transgenic endochitinase activities were examined in the leaves of transgenic tobacco as well as in the leaves, roots, hypocotyls and seeds of transgenic cotton. Transgenic plants with elevated endochitinase activities also showed the expected 42 kDa endochitinase band in fluorescence, gel-based assays performed with the leaf extracts in both species. Homozygous T2 plants of the high endochitinase-expressing cotton lines were tested for disease resistance against a soil-borne pathogen, Rhizoctonia solani and a foliar pathogen, Alternaria alternata. Transgenic cotton plants showed significant resistance to both pathogens.  相似文献   
38.
39.
用来自日本和美国的立枯丝核菌8个融合群11个类群代表菌株进行可溶性蛋白质电泳,其结果表明,各融合群及亚群之间电泳图谱有显著差异,而同一类群菌株的电泳图谱则相似。分析来源于华东等地已鉴定的融合类群117个菌株的电泳图谱显示,同一融合群内菌株,虽然采集地区、寄主植物或致病力不同,其蛋白质图谱仍十分相似;而不同融合类群的菌株,即使在同一田块中同一种寄主植物上引起相似病害,其图谱也显示出明显差异。本文就上述可溶性蛋白质图谱显示的结果与其它研究者在血清学、DNA同源性.酯酶等生化水平上对融合群的研究结果进行了比较和探讨。  相似文献   
40.
Glomus mosseae and the two pod rot pathogens Fusarium solani and Rhizoctonia solani and subsequent effects on growth and yield of peanut (Arachis hypogaea L.) plants were investigated in a greenhouse over a 5-month period. At plant maturity, inoculation with F. solani and/or R. solani significantly reduced shoot and root dry weights, pegs and pod number and seed weight of peanut plants. In contrast, the growth response and biomass of peanut plants inoculated with G. mosseae was significantly higher than that of non-mycorrhizal plants, both in the presence and absence of the pathogens. Plants inoculated with G. mosseae had a lower incidence of root rot, decayed pods, and death than non-mycorrhizal ones. The pathogens either alone or in combination reduced root colonization by the mycorrhizal fungus. Propagule numbers of each pathogen isolated from pod shell, seed, carpophore, lower stem and root were significantly lower in mycorrhizal plants than in the non-mycorrhizal plants. Thus, G. mosseae protected peanut plants from infection by pod rot fungal pathogens. Accepted: 10 February 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号